
MonkeyType Documentation
Release 23.3.0

Matt Page & Carl Meyer

Mar 20, 2023

Contents

1 Example 3

2 Motivation 5

3 Requirements 7

4 Installing 9

5 How MonkeyType works 11

6 The Details 13
6.1 Configuration . 13
6.2 Tracing function calls . 15
6.3 Generating type annotations . 18
6.4 Storing call traces . 20
6.5 Frequently asked questions . 23

7 Indices and tables 25

Python Module Index 27

Index 29

i

ii

MonkeyType Documentation, Release 23.3.0

MonkeyType collects runtime types of function arguments and return values, and can automatically generate stub files
or even add draft type annotations directly to your Python code based on the types collected at runtime.

Contents 1

https://opensource.fb.com/support-ukraine

MonkeyType Documentation, Release 23.3.0

2 Contents

CHAPTER 1

Example

Say some/module.py originally contains:

def add(a, b):
return a + b

And myscript.py contains:

from some.module import add

add(1, 2)

Now we want to infer the type annotation of add in some/module.py by running myscript.py with
MonkeyType. One way is to run:

$ monkeytype run myscript.py

By default, this will dump call traces into a SQLite database in the file monkeytype.sqlite3 in the current
working directory. You can then use the monkeytype command to generate a stub file for a module, or apply the
type annotations directly to your code.

Running monkeytype stub some.module will output a stub:

def add(a: int, b: int) -> int: ...

Running monkeytype apply some.module will modify some/module.py to:

def add(a: int, b: int) -> int:
return a + b

This example demonstrates both the value and the limitations of MonkeyType. With MonkeyType, it’s very easy to
add annotations that reflect the concrete types you use at runtime, but those annotations may not always match the
full intended capability of the functions. For instance, add is capable of handling many more types than just integers.
Similarly, MonkeyType may generate a concrete List annotation where an abstract Sequence or Iterablewould
be more appropriate. MonkeyType’s annotations are an informative first draft, to be checked and corrected by a
developer.

3

MonkeyType Documentation, Release 23.3.0

4 Chapter 1. Example

CHAPTER 2

Motivation

Readability and static analysis are the primary motivations for adding type annotations to code. It’s already common
in many Python style guides to document the argument and return types for a function in its docstring; annotations are
a standardized way to provide this documentation, which also permits static analysis by a typechecker such as mypy.

For more on the motivation and design of Python type annotations, see PEP 483 and PEP 484.

5

http://mypy.readthedocs.io/en/latest/
https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0484

MonkeyType Documentation, Release 23.3.0

6 Chapter 2. Motivation

CHAPTER 3

Requirements

MonkeyType requires Python 3.7+ and the libcst library (for applying type stubs to code files). It generates only
Python 3 type annotations (no type comments).

7

https://pypi.python.org/pypi/libcst

MonkeyType Documentation, Release 23.3.0

8 Chapter 3. Requirements

CHAPTER 4

Installing

Install MonkeyType with pip:

pip install MonkeyType

9

https://pip.pypa.io/en/stable/

MonkeyType Documentation, Release 23.3.0

10 Chapter 4. Installing

CHAPTER 5

How MonkeyType works

MonkeyType uses the sys.setprofile hook provided by Python to interpose on function calls, function returns, and
generator yields, and record the types of arguments / return values / yield values.

It generates stub files based on that data, and can use libcst to apply those stub files directly to your code.

11

https://docs.python.org/3/library/sys.html#sys.setprofile
https://mypy.readthedocs.io/en/latest/getting_started.html#library-stubs-and-typeshed
https://pypi.python.org/pypi/libcst

MonkeyType Documentation, Release 23.3.0

12 Chapter 5. How MonkeyType works

CHAPTER 6

The Details

6.1 Configuration

Most of the useful ways to configure MonkeyType require writing Python code to implement your preferred behavior,
so MonkeyType’s configuration is done in Python code. To customize MonkeyType, you:

1. subclass monkeytype.config.Config or monkeytype.config.DefaultConfig,

2. override one or more methods in your subclass,

3. instantiate your subclass, and

4. point MonkeyType to your custom Config instance.

Let’s look at those steps in more detail.

6.1.1 Subclassing Config or DefaultConfig

class monkeytype.config.Config

Config is the “empty” config; it’s not usable out of the box, and requires your subclass to fill in
some blanks in order to get useful behavior. It has the following methods:

trace_store()→ CallTraceStore
Return the CallTraceStore subclass you want to use to store your call traces.

This is the one method you must override if you subclass the empty Config.

trace_logger()→ CallTraceLogger
Return the CallTraceLogger subclass you want to use to log your call traces.

If you don’t override, this returns an instance of CallTraceStoreLogger initialized with
your trace_store().

code_filter()→ CodeFilter
Return the code filter that categorizes traced functions into ones you are interested in (so their
traces should be stored) and ones you aren’t (their traces will be ignored).

13

MonkeyType Documentation, Release 23.3.0

If you don’t override, returns None, meaning all traces will be stored. This will probably include
a lot of standard-library and third-party functions!

sample_rate()→ int
Return the integer sampling rate for your logged call traces. If you return an integer N from this
method, 1/N function calls will be traced and logged.

If you don’t override, returns None, which disables sampling; all function calls will be traced
and logged.

type_rewriter()→ TypeRewriter
Return the TypeRewriter which will be applied to all your types when stubs are generated.

If you don’t override, returns NoOpRewriter, which doesn’t rewrite any types.

query_limit()→ int
The maximum number of call traces to query from the trace store when generating stubs. If
you have recorded a lot of traces, increasing this limit may improve stub accuracy, at the cost of
slower stub generation.

On the other hand, if some of your recorded traces are out of date because the code has changed,
and you haven’t purged your trace store, increasing this limit could make stubs worse by includ-
ing more outdated traces.

Defaults to 2000.

cli_context(command: str)→ Iterator[None]
A context manager which wraps the execution of the CLI command.

MonkeyType has to import your code in order to generate stubs for it. In some cases, like if
you’re using Django, setup is required before your code can be imported. Use this method to
define the necessary setup or teardown for your codebase.

This method must return a context manager instance. In most cases, the simplest way to do
this will be with the contextlib.contextmanager decorator. For example, if you run MonkeyType
against a Django codebase, you can setup Django before the command runs:

@contextmanager
def cli_context(self, command: str) -> Iterator[None]:

import django
django.setup()
yield

command is the name of the command passed to the monkeytype cli: 'run', 'apply', etc.

The default implementation of this method returns a no-op context manager.

max_typed_dict_size()→ int
The maximum size of string-keyed dictionary for which per-key value types will be stored, and (if the
traced keys and value types are consistent), a TypedDict will be emitted instead of Dict. Return 0 to
disable per-key type tracking and TypedDict generation.

Defaults to 0.

class monkeytype.config.DefaultConfig
DefaultConfig is the config MonkeyType uses if you don’t provide your own; it’s usable as-is, and you can
inherit it if you just want to make some tweaks to the default setup. DefaultConfig overrides the following
methods from Config:

trace_store()→ SQLiteStore
Returns an instance of SQLiteStore, which stores call traces in a local SQLite database, by default

14 Chapter 6. The Details

https://docs.python.org/3/reference/datamodel.html#with-statement-context-managers
https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager

MonkeyType Documentation, Release 23.3.0

in the file monkeytype.sqlite3 in the current directory. You can override the path to the SQLite
database by setting the MT_DB_PATH environment variable.

code_filter()→ CodeFilter
Returns the default code filter predicate function. If an environment variable
MONKEYTYPE_TRACE_MODULES is defined with one or more comma separated package and/or
module names, the default code filter traces only functions within the listed modules. Otherwise the
default filter excludes code in the Python standard library and installed site-packages, and traces all other
functions.

type_rewriter()→ ChainedRewriter
Returns an instance of ChainedRewriter initialized with the RemoveEmptyContainers,
RewriteConfigDict, and RewriteLargeUnion type rewriters.

6.1.2 Using your custom config subclass

Once you’ve written a Config or DefaultConfig subclass, you need to instantiate it and point MonkeyType to
that instance. The easiest way to do this is to create a file named monkeytype_config.py and create a Config
instance in it named CONFIG; MonkeyType will find and use this config automatically.

For example, let’s say you mostly like the default config, but you want to add a sampling rate, so you put this code in
the file monkeytype_config.py:

from monkeytype.config import DefaultConfig

class MyConfig(DefaultConfig):
def sample_rate(self):

return 1000

CONFIG = MyConfig()

MonkeyType will automatically find and use this config (as long as monkeytype_config.py is on the Python
path).

Specifying a config

You can also explicitly specify the config instance to use. For instance, when tracing calls using the monkeytype.
trace() context manager, you can just pass your config object to it:

from monkeytype import trace
from some.module import my_config

with trace(my_config):
... run some code you want to trace here ...

When running the command line utility, use the --config or -c option to point MonkeyType to your config, e.g.:

$ monkeytype -c some.module:my_config stub some.module

6.2 Tracing function calls

The core data type in MonkeyType is the CallTrace. A CallTrace instance represents a single traced call of a
single function or method, including the concrete type of each argument and the return or yield type.

6.2. Tracing function calls 15

MonkeyType Documentation, Release 23.3.0

A CallTrace is recorded by monkeytype run or the trace() context manager (or direct use of a CallTracer),
logged via a CallTraceLogger, probably stored in a CallTraceStore, and later queried from that store by
monkeytype stub or monkeytype apply and combined with all other traces of the same function in order to generate a
stub or type annotation for that function.

6.2.1 monkeytype run

The simplest way to trace some function calls with MonkeyType is to run a Python script under MonkeyType tracing
using monkeytype run or monkeytype run -m at the command line:

$ monkeytype run myscript.py
$ monkeytype run -m mymodule

monkeytype run accepts the same monkeytype -c option as monkeytype stub and monkeytype
apply, to point MonkeyType to the config it should use.

Because of the way Python treats scripts and imported modules differently, MonkeyType will not record traces for
the entry point itself (that is, the script passed to monkeytype run or the module passed to run -m); traces are
recorded only for imported modules. If you want to annotate the entry point script/module, write another short script
that imports and calls its function(s), and run that script with monkeytype run.

6.2.2 trace context manager

You can also trace calls by wrapping a section of code inside the trace() context manager:

import monkeytype

with monkeytype.trace():
argument and yield/return types for all function calls will be traced
and stored to `monkeytype.sqlite3`

You can pass a Config object to trace() to customize its behavior:

import monkeytype
from my_mt_config import my_config

with monkeytype.trace(my_config):
arg and yield/return types for function calls here will be traced and
logged as specified by your config.

monkeytype.trace([config: Config])→ ContextManager
Trace all enclosed function calls and log them per the given config. If no config is given, use the
DefaultConfig.

6.2.3 CallTracer

class monkeytype.tracing.CallTracer(logger: CallTraceLogger, code_filter: CodeFilter, sam-
ple_rate: int)

For more complex tracing cases where you can’t easily wrap the code to trace in a context manager, you can also use
a CallTracer directly. CallTracer doesn’t accept a Config object; instead you pass it a logger, filter, and
sample rate.

If you have a config, you can easily pull those from it:

16 Chapter 6. The Details

MonkeyType Documentation, Release 23.3.0

from monkeytype.tracing import CallTracer
from my_mt_config import my_config

logger = my_config.trace_logger()
tracer = CallTracer(

logger=logger,
max_typed_dict_size=my_config.max_typed_dict_size(),
code_filter=my_config.code_filter(),
sample_rate=my_config.sample_rate(),

)

The CallTracer has no public API apart from its constructor, but it is suitable for passing to sys.setprofile
as a profiler:

sys.setprofile(tracer)

run some code to be traced

sys.setprofile(None) # remove the tracer

If your CallTraceLogger requires flushing, you should also do this after completing tracing:

logger.flush()

6.2.4 Deciding which calls to trace

You probably don’t want to store traces for every single function called by your program; that will likely include a lot
of calls to Python standard-library or third-party library functions that aren’t your target for type annotation.

To filter the calls that will be traced, you can return a predicate function from the code_filter() method of your
Config(). This function should take a Python code object and return a boolean: True means the function will be
traced, and False means it will not.

The DefaultConfig includes a default code filter. If the environment variable MONKEYTYPE_TRACE_MODULES
is set to a list of package and/or module names, the default filter traces only code from within those modules. Other-
wise, the default filter simply excludes code from the Python standard library and site-packages.

6.2.5 Logging traces

A call-trace logger is responsible for accepting CallTrace instances one by one as they are generated by the tracing
code and doing something with them. It could print them directly to stdout, in the simplest case, or (more likely) hand
them off to a CallTraceStore for storage and later retrieval.

class monkeytype.tracing.CallTraceLogger
Defines the interface that call-trace loggers should implement.

log(trace: CallTrace)→ None
Accept a single CallTrace and do something with it. This method is called every time a new
CallTrace is generated.

flush()→ None
Flush logged call traces. This method is called once on exiting from the trace() context manager.

This method doesn’t have to be implemented; by default it is a no-op. For very simple trace loggers (e.g.
logging to stdout), each trace can be fully handled in log() directly as it is received, and no batching or
flushing is needed.

6.2. Tracing function calls 17

https://docs.python.org/3/reference/datamodel.html

MonkeyType Documentation, Release 23.3.0

CallTraceStoreLogger

class monkeytype.db.base.CallTraceStoreLogger(store: CallTraceStore)

The typical function of a call-trace logger is just to batch collected traces and then store them in a CallTraceStore.
This is implemented by CallTraceStoreLogger. Its log() method just appends the trace to an in-memory list,
and its flush() method saves all collected traces to the given store.

CallTrace

class monkeytype.tracing.CallTrace(func: Callable, arg_types: Dict[str, type], return_type:
Optional[type] = None, yield_type: Optional[type] =
None)

Type information for one traced call of one function.

func: Callable
The function that was called.

funcname: str
Fully-qualified name of the function, including module name (e.g. some.module.some_func or
some.module.SomeClass.some_method).

arg_types: Dict[str, type]
Dictionary mapping argument names to types, for this particular traced call.

return_type: Optional[type]
Type returned by this call, or None if this call did not return.

yield_type: Optional[type]
Type yielded by this call, or None if this call did not yield.

6.3 Generating type annotations

Use the monkeytype command-line script to generate and apply stub files based on recorded call traces.

The script must be able to import your code. It automatically adds the current working directory to the Python path,
so ensuring that you run monkeytype from the root of your code is usually sufficient. Alternatively, you can set the
PYTHONPATH environment variable.

6.3.1 monkeytype list-modules

The monkeytype list-modules subcommand outputs a list of all modules which have traces present in the
trace store. This command respects only the --config option.

6.3.2 monkeytype stub

Run monkeytype stub some.module to generate a stub file for the given module based on call traces queried
from the trace store. If the module already has some type annotations, those annotations will be respected and will not
be replaced with annotations derived from traced calls.

The generated stub file will be printed to standard output. If you want to save it to a file, redirect the output to a file
(e.g. monkeytype stub some.module > some/module.pyi).

You can also run e.g. monkeytype stub some.module:SomeClass or monkeytype stub some.
module:somefunc to generate a stub for just one class or function.

18 Chapter 6. The Details

MonkeyType Documentation, Release 23.3.0

MonkeyType must import your code in order to generate annotations for it, so if a module has import side effects,
running monkeytype stub on the module will trigger those side effects. For “executable” modules, ensure the
execution code is protected with if __name__ == '__main__' to avoid MonkeyType triggering it.

6.3.3 monkeytype apply

If you prefer inline type annotations, monkeytype apply some.module will generate annotations for some.
module internally (in exactly the same way as monkeytype stub would), but rather than printing the annotations
in stub syntax, it will apply them directly to the code file, modifying it in-place.

Obviously this is best used when the file is tracked in a version-control system, so you can easily see the changes made
by MonkeyType and accept or reject them. MonkeyType annotations are rarely suitable exactly as generated; they are
a starting point and usually require some adjustment by someone who understands the code.

6.3.4 Options

Both monkeytype stub and monkeytype apply accept the following options:

-c <config-path>, --config <config-path>
The location of the config object defining your call-trace store and other configuration. The config-path should
take the form some.module:name, where name is the variable in some.module containing your config
instance.

Optionally, the value can also include a () suffix, and MonkeyType will call/instantiate the imported func-
tion/class with no arguments to get the actual config instance.

The default value is monkeytype.config:get_default_config(), which tries the config path
monkeytype_config:CONFIG and falls back to monkeytype.config:DefaultConfig() if there
is no monkeytype_config module. This allows creating a custom config that will be used by default just
by creating monkeytype_config.py with a CONFIG instance in it.

-l <limit>, --limit <limit>
The maximum number of call traces to query from your call trace store.

See the query_limit() config method.

Default: 2000

--disable-type-rewriting
Don’t apply your configured Type rewriters to the output types.

--ignore-existing-annotations
Generate a stub based only on traced calls, ignoring (and overwriting, if applying stubs) any existing type
annotations in the code. (By default, existing annotations in the code take precedence over traced types.)

Additionally, monkeytype stub accepts:

--omit-existing-annotations
Generate a stub that omits any annotations that are already present in the source. (By default, existing annota-
tions in the source are reproduced in the stub.) Because MonkeyType has to replicate existing annotations via
runtime introspection, and doesn’t have access to the original string, its replication is often imperfect, which
would cause spurious conflicts when applying the stub. Omitting these annotations entirely when generating a
stub for application has no cost, since they are already present in the source.

This option is implied by monkeytype apply, since it minimizes the possibility of a conflict when attempt-
ing to apply annotations.

This option is mutually exclusive with --ignore-existing-annotations.

6.3. Generating type annotations 19

MonkeyType Documentation, Release 23.3.0

--diff
Generate a textual diff between stubs generated by preserving existing annotations and ignoring them. Use this
to see how accurately your annotations represent what is seen in production.

Additionally, monkeytype apply accepts:

--pep_563
Adds from __future__ import annotations to the applied file, and confines all the newly added
imports from the stub in the if TYPE_CHECKING block to prevent potential circular dependencies.

6.3.5 Type rewriters

MonkeyType’s built-in type generation is quite simple: it just makes a Union of all the types seen in traces for a
given argument or return value, and shrinks that Union to remove redundancy. All additional type transformations
are performed through configured type rewriters.

class monkeytype.typing.TypeRewriter
The TypeRewriter class provides a type-visitor that can be subclassed to easily implement custom type
transformations.

Subclasses can implement arbitrary rewrite_Foo methods for rewriting a type named Foo.
TypeRewriter itself implements only rewrite_Dict, rewrite_List, rewrite_Set,
rewrite_Tuple, rewrite_Union (in addition to the methods listed below). These methods just
recursively rewrite all type arguments of the container types.

For example type rewriter implementations, see the source code of the subclasses listed below.

rewrite(typ: type)→ type
Public entry point to rewrite given type; return rewritten type.

generic_rewrite(typ: type)→ type
Fallback method when no specific rewrite_Foo method is available for a visited type.

class monkeytype.typing.RemoveEmptyContainers
Rewrites e.g. Union[List[Any], List[int]] to List[int]. The former type frequently occurs
when a method that takes List[int] also sometimes receives the empty list, which will be typed as
List[Any].

class monkeytype.typing.RewriteConfigDict
Takes a generated type like Union[Dict[K, V1], Dict[K, V2]] and rewrites it to Dict[K,
Union[V1, V2]].

class monkeytype.typing.RewriteLargeUnion(max_union_len: int = 5)
Rewrites large unions (by default, more than 5 elements) to simply Any, for better readability of functions that
aren’t well suited to static typing.

class monkeytype.typing.ChainedRewriter(rewriters: Iterable[TypeRewriter])
Accepts a list of rewriter instances and applies each in order. Useful for composing rewriters, since the
type_rewriter config method only allows returning a single rewriter.

class monkeytype.typing.NoOpRewriter
Does nothing. The default type rewriter in the base Config.

6.4 Storing call traces

MonkeyType operates in two phases: call tracing and stub generation. You first run some code under MonkeyType
tracing and store the traced calls. You can do this repeatedly, maybe even sampled in production continually so you

20 Chapter 6. The Details

MonkeyType Documentation, Release 23.3.0

always have up-to-date traces available. Then whenever you need, you run monkeytype stub or monkeytype
apply to generate annotations based on types from the recorded traces.

In order to do this, MonkeyType needs a backing store for the recorded call traces. By default it will use
SQLiteStore, which stores traces in a local SQLite database file. But you can write your own CallTraceStore
subclass to store traces in whatever data store works best for you, and return an instance of your custom store from the
trace_store() method of your Config class.

6.4.1 CallTraceStore interface

The CallTraceStore base class defines the interface that all call-trace stores must implement. The
SQLiteStore subclass provides a useful example implementation of the CallTraceStore interface.

class monkeytype.db.base.CallTraceStore

classmethod make_store(connection_string: str)→ CallTraceStore
Create and return an instance of the store, given a connection string.

The format and interpretation of the connection string is entirely up to the store class. Typically it might
be e.g. a URI like mysql://john:pass@localhost:3306/my_db.

add(traces: Iterable[CallTrace])→ None
Store one or more CallTrace instances.

Implementations of this method will probably find the serialize_traces() function useful.

filter(module: str, qualname_prefix: Optional[str] = None, limit: int = 2000) →
List[CallTraceThunk]

Query call traces from the call trace store. The module argument should be provided as a dotted Python
import path (e.g. some.module).

The store should return the most recent limit traces available for the given module and qualname.

The returned CallTraceThunk instances can be any object that implements a to_trace() zero-
argument method returning a CallTrace instance. This allows callers of filter to handle deserializa-
tion errors as desired per-trace.

Most stores will choose to return instances of CallTraceRow , which implements a to_trace() that
deserializes traces from the same JSON format that its from_trace() classmethod serializes to.

list_modules()→ List[str]
Query all traces in the trace store and return a list of module names for which traces exist in the store.

6.4.2 SQLiteStore

MonkeyType bundles one sample store implementation, which DefaultConfig uses as the default store. It stores
call traces in a SQLite database in a local file.

class monkeytype.db.sqlite.SQLiteStore

classmethod make_store(connection_string: str)→ SQLiteStore
The connection_string argument will be passed straight through to the Python standard library
sqlite module.

add(traces: Iterable[CallTrace])→ None
Store one or more CallTrace instances in the SQLite database, encoded via CallTraceRow .

6.4. Storing call traces 21

https://docs.python.org/3/library/sqlite3.html

MonkeyType Documentation, Release 23.3.0

filter(module: str, qualname_prefix: Optional[str] = None, limit: int = 2000)→ List[CallTraceRow]
Query up to limit call traces from the SQLite database for a given module and optional
qualname_prefix, returning each as a CallTraceRow instance.

6.4.3 serialize_traces

monkeytype.encoding.serialize_traces(traces: Iterable[CallTrace]) → Iter-
able[CallTraceRow]

Serialize an iterable of CallTrace to an iterable of CallTraceRow (via CallTraceRow.
from_trace()). If any trace fails to serialize, the exception is logged and serialization continues.

6.4.4 CallTraceRow

The CallTraceRow class implements serialization/deserialization of CallTrace instances to/from JSON. See the
implementation of SQLiteStore for example usage.

It is not required for a custom store to use CallTraceRow ; a store may choose to implement its own alternative
(de)serialization.

class monkeytype.encoding.CallTraceRow

classmethod from_trace(trace: CallTrace)→ CallTraceRow
Serialize a CallTraceRow from the given CallTrace.

to_trace()→ CallTrace
Deserialize and return the CallTrace represented by this CallTraceRow .

module: str
The module in which the traced function is defined, e.g. some.module.

qualname: str
The __qualname__ of the traced function or method, e.g. some_func for a top-level function or
SomeClass.some_method for a method.

arg_types: str
A JSON-serialized representation of the concrete argument types for a single traced call. See the imple-
mentation for details of the format.

return_type: Optional[str]
A JSON-serialized representation of the actual return type of this traced call, or None if this call did not
return (i.e. yielded instead).

yield_type: Optional[str]
A JSON-serialized representation of the actual yield type for this traced call, or None if this call did not
yield (i.e. returned instead).

6.4.5 CallTraceThunk

The minimal required interface of the objects returned from CallTraceStore.filter(). Most stores will use
CallTraceRow to satisfy this interface.

class monkeytype.db.base.CallTraceThunk

to_trace()→ CallTrace
Produce a CallTrace instance based on the serialized trace data stored in this thunk.

22 Chapter 6. The Details

MonkeyType Documentation, Release 23.3.0

6.5 Frequently asked questions

6.5.1 Why don’t my decorated functions get traces?

If you have decorators that don’t use functools.wraps on the wrapper function returned by the decorator, Monkey-
Type won’t be able to trace functions decorated with them. MonkeyType needs the __wrapped__ attribute added by
functools.wraps to be able to trace the frame back to an importable function.

6.5.2 I’m using Django 1.11+ and monkeytype run manage.py test generates
no traces.

Django 1.11 enabled parallel test runs by default. This means your tests run in separate subprocesses; MonkeyType is
tracing only the main supervisor process, which runs only Django code (that is excluded from tracing by the default
code filter). To get traces, use --parallel 1 when running your tests under MonkeyType tracing.

6.5.3 I’m using Django, and I get an AppRegistryNotReady exception when I run
monkeytype.

You need to use the cli_context() config method to call django.setup().

6.5.4 I run tests against my package installed in site-packages, and I get no traces.

The default code_filter() excludes all code from the standard library and site-packages, on the assumption
that it is third-party code that isn’t useful to trace. If you want to trace calls to a package in site-packages, you can
set the environment variable MONKEYTYPE_TRACE_MODULES to a comma-separated list of package/module names
you want to trace; only these modules will be traced, wherever they are installed. For more advanced behaviors, you
can define your own custom code filter.

6.5.5 Why did my test coverage measurement stop working?

MonkeyType uses the same sys.setprofile hook that coverage.py uses to measure Python code coverage, so you can’t
use MonkeyType and coverage measurement together. If you want to run your tests under MonkeyType tracing, disable
coverage measurement for that run, and vice versa.

6.5.6 MonkeyType stopped generating TypedDicts.

Since 19.11.2 TypedDict generation is disabled by default. To enable it, create a config file monkeytype_config.
py with the following content:

from monkeytype.config import DefaultConfig

class MyConfig(DefaultConfig):
...
def max_typed_dict_size(self) -> int:

"""
The maximum size of string-keyed dictionary for which per-key value types
will be stored, and (if the traced keys and value types are consistent),
a TypedDict will be emitted instead of Dict.
Return 0 to disable per-key type tracking and TypedDict generation.

(continues on next page)

6.5. Frequently asked questions 23

https://docs.python.org/3/library/sys.html#sys.setprofile
https://coverage.readthedocs.io/

MonkeyType Documentation, Release 23.3.0

(continued from previous page)

"""
return 10

CONFIG = MyConfig()

24 Chapter 6. The Details

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

25

MonkeyType Documentation, Release 23.3.0

26 Chapter 7. Indices and tables

Python Module Index

m
monkeytype, 16
monkeytype.config, 13
monkeytype.db.base, 21
monkeytype.db.sqlite, 21
monkeytype.encoding, 22
monkeytype.tracing, 15
monkeytype.typing, 20

27

MonkeyType Documentation, Release 23.3.0

28 Python Module Index

Index

Symbols
-diff

monkeytype command line option, 19
-disable-type-rewriting

monkeytype command line option, 19
-ignore-existing-annotations

monkeytype command line option, 19
-omit-existing-annotations

monkeytype command line option, 19
-pep_563

monkeytype command line option, 20
-c <config-path>, -config

<config-path>
monkeytype command line option, 19

-l <limit>, -limit <limit>
monkeytype command line option, 19

A
add() (monkeytype.db.base.CallTraceStore method), 21
add() (monkeytype.db.sqlite.SQLiteStore method), 21

C
CallTrace (class in monkeytype.tracing), 18
CallTraceLogger (class in monkeytype.tracing), 17
CallTracer (class in monkeytype.tracing), 16
CallTraceRow (class in monkeytype.encoding), 22
CallTraceStore (class in monkeytype.db.base), 21
CallTraceStoreLogger (class in monkey-

type.db.base), 18
CallTraceThunk (class in monkeytype.db.base), 22
ChainedRewriter (class in monkeytype.typing), 20
cli_context() (monkeytype.config.Config method),

14
code_filter() (monkeytype.config.Config method),

13
code_filter() (monkeytype.config.DefaultConfig

method), 15
Config (class in monkeytype.config), 13

D
DefaultConfig (class in monkeytype.config), 14

F
filter() (monkeytype.db.base.CallTraceStore

method), 21
filter() (monkeytype.db.sqlite.SQLiteStore method),

21
flush() (monkeytype.tracing.CallTraceLogger

method), 17
from_trace() (monkeytype.encoding.CallTraceRow

class method), 22

G
generic_rewrite() (monkey-

type.typing.TypeRewriter method), 20

L
list_modules() (monkey-

type.db.base.CallTraceStore method), 21
log() (monkeytype.tracing.CallTraceLogger method),

17

M
make_store() (monkeytype.db.base.CallTraceStore

class method), 21
make_store() (monkeytype.db.sqlite.SQLiteStore

class method), 21
max_typed_dict_size() (monkey-

type.config.Config method), 14
monkeytype (module), 16
monkeytype command line option

-diff, 19
-disable-type-rewriting, 19
-ignore-existing-annotations, 19
-omit-existing-annotations, 19
-pep_563, 20
-c <config-path>, -config

<config-path>, 19

29

MonkeyType Documentation, Release 23.3.0

-l <limit>, -limit <limit>, 19
monkeytype.config (module), 13
monkeytype.db.base (module), 21
monkeytype.db.sqlite (module), 21
monkeytype.encoding (module), 22
monkeytype.tracing (module), 15
monkeytype.typing (module), 20

N
NoOpRewriter (class in monkeytype.typing), 20

P
Python Enhancement Proposals

PEP 483, 5
PEP 484, 5

Q
query_limit() (monkeytype.config.Config method),

14

R
RemoveEmptyContainers (class in monkey-

type.typing), 20
rewrite() (monkeytype.typing.TypeRewriter method),

20
RewriteConfigDict (class in monkeytype.typing),

20
RewriteLargeUnion (class in monkeytype.typing),

20

S
sample_rate() (monkeytype.config.Config method),

14
serialize_traces() (in module monkey-

type.encoding), 22
SQLiteStore (class in monkeytype.db.sqlite), 21

T
to_trace() (monkeytype.db.base.CallTraceThunk

method), 22
to_trace() (monkeytype.encoding.CallTraceRow

method), 22
trace() (in module monkeytype), 16
trace_logger() (monkeytype.config.Config method),

13
trace_store() (monkeytype.config.Config method),

13
trace_store() (monkeytype.config.DefaultConfig

method), 14
type_rewriter() (monkeytype.config.Config

method), 14
type_rewriter() (monkeytype.config.DefaultConfig

method), 15
TypeRewriter (class in monkeytype.typing), 20

30 Index

	Example
	Motivation
	Requirements
	Installing
	How MonkeyType works
	The Details
	Configuration
	Tracing function calls
	Generating type annotations
	Storing call traces
	Frequently asked questions

	Indices and tables
	Python Module Index
	Index

